bénéfice maximal: Une usine fabrique et vend des boites de jeux pour enfants. Apres les fabrication et la vente de x centaines de boites de jeux, le bénéfice ne
Mathématiques
fimiezmelanie
Question
bénéfice maximal:
Une usine fabrique et vend des boites de jeux pour enfants.
Apres les fabrication et la vente de x centaines de boites de jeux, le bénéfice net réalisé en un mois s'exprime, en euros, par: B(x) = -10x²+900x-2610 , pour x compris entre 3 et 100.
1) Dresser le tableau de signes de B(x) sur R de la fonction:
f : x --> -10x²+900x-2610.
En déduire le tableau de signes de B(x) sur [3;100].
2) Déterminer la quantité de boites de jeux à fabriquer et a vendre pour que l'entreprise réalise des bénéfices, c'est a dire pour avoir B(x) > 0.
3) Déterminer l'abscisse du sommet de la parabole représentant la fonction f.
En déduire la quantité de boites de jeux à fabriquer et a vendre pour que l'entreprise réalise un bénéfice maximal.
Aidez moi je vous en pries :$
Une usine fabrique et vend des boites de jeux pour enfants.
Apres les fabrication et la vente de x centaines de boites de jeux, le bénéfice net réalisé en un mois s'exprime, en euros, par: B(x) = -10x²+900x-2610 , pour x compris entre 3 et 100.
1) Dresser le tableau de signes de B(x) sur R de la fonction:
f : x --> -10x²+900x-2610.
En déduire le tableau de signes de B(x) sur [3;100].
2) Déterminer la quantité de boites de jeux à fabriquer et a vendre pour que l'entreprise réalise des bénéfices, c'est a dire pour avoir B(x) > 0.
3) Déterminer l'abscisse du sommet de la parabole représentant la fonction f.
En déduire la quantité de boites de jeux à fabriquer et a vendre pour que l'entreprise réalise un bénéfice maximal.
Aidez moi je vous en pries :$
1 Réponse
-
1. Réponse isapaul
Bonsoir
f(x) = -10x² + 900x - 2610 pour x ∈ [ 3 ; 100 ]
1)
f(x) = 0 Δ = 705600 alors √Δ = 840
deux solutions x' = 87 et x" = 3
2)
f(x) > 0 pour x ∈ [ 3 ; 87 ]
3) F(x) maximal pour x = -b/2a = -900/-20 = 45
B(45) = -20250 + 40500 - 2610 = 17640 euros
Bonne soirée